
Zenith

Environmental Product Declaration

In accordance with ISO 14025 for:

Orbis Workstation (2CJ)

Environmental Product Declaration (EPD)

in accordance with ISO 14025 EPD Registration No. S-P-04647 | Version 1.0 Issued 14/10/2021 | Valid until 14/10/2026

Company Information

Zenith Interiors designs, manufactures, and distributes leading-edge products for corporate and commercial environments that inspire people and organisations to excel (Zenith Interiors, 2019).

Product-related or management system-related certifications:

ISO 9001 - Quality management systems

ISO 14001 - Environmental Management Systems

AS 4801 Health and Safety

Name and location of production site: Zenith Interiors, Melbourne, Victoria.

Orbis workstation (O2CJ)

The Orbis workstation supports individual, shared, focus and collaborative work modes and can easily be transformed and customised to meet the client's individual requirement. The range of sizes, shapes and finishes provides the end user with greater freedom, flexibility, and choice in the way they work both individually and as a team.

UN CPC code: 3812/3813/3814 (EPD International, 2019).

Geographical scope: Final product produced in Melbourne, Victoria for the Australian market.

LCA Information

<u>Functional unit / declared unit:</u> 1 O2CJ workstation with four variations in the product; tabletop dimensions: 1.8 m * 0.8 m * 0.025 m; adjustable leg height: 0.62 m to 1.23 m (sit to stand).

Scope: Cradle to grave life cycle of one Orbis workstation

Reference service life: 15 years (EPD International, 2019)

Databases and LCA software used: AusLCI 2.2, ecoinvent 3.6, Industry Data 2.0 databases; SimaPro 9.1.0.11 software

Data collection period: July 2019 - February 2020

An Environmental Product Declaration, or EPD, is a standardised and verified way of quantifying the environmental impacts of a product that is based on a consistent set of rules known as Product Category Rules (PCR). EPDs within the same product category from different programs may not be comparable. This EPD is for a specific furniture product and follows the Product Category Rules 'Furniture, except seats and mattresses v2.01'.

Declaration Owner: Zenith Interiors Web: zenithinteriors.com Email: info@zenithinteriors.com Phone: 1300 013 013 **EPD produced by:** Good Environmental Choice Australia (GECA) Web: geca.eco Email: enquiries@geca.org.au Phone: 02 9699 2850 **EPD program operator:** The Australaisan EPD® Programme Ltd Web: www.epd-australasia.com Email: info@epd-australasia.com Post: c/o Kendons Chartered Accountants PO Box 31045, Lower Hutt 5040, New Zealand **PCR Information** PCR: Product Category Rules 'Furniture, except seats and mattresses v2.01'. PCR review conducted by: GECA Australia; According to product category rules (PCR): Furniture, except seats and mattresses 2012:19 VERSION 2.01 UN CPC 3812/3813/3814 Independant verification of the declaration and data, according to ISO 14025: EPD process certification (Internal) EPD verification (External) Third party verifier Third Party Review (by Edge Environment)

Accredited or approved by: The Australasian EPD® **Programme**

Product Information

The Orbis workstation consists of three parts: a 25 mm tabletop, electric adjust legs and a beam which connects the legs and the tabletop. The legs have a height range of 610 to 900 mm (sit to sit) and 620 to 1230 mm (sit to stand). The worktops are made of particle board or medium density fibreboard, while the legs come with or without an alloyed steel bracket. All four options are analysed in this EPD: particle board / medium density fibreboard; with / without bracket.

Background Data

Australian inputs were primarily modelled with the AustCI database; the ecoinvent v3 database was used where suppliers were from overseas. All background data used was less than ten years old.

System Boundaries and Life Cycle Stages

Life Cycle Stages

This Environmental Product Declaration analyses the production of an Orbis workstation, including the raw material extraction, the manufacture of components from suppliers, the assembly of the workstation as well as the end of its service life. The different Orbis components are transported to Sandringham, Victoria where metal components are being powder coated and the workstation is assembled. The product is then packed in cardboard boxes and supplied to showrooms as well as clients in Australia.

'Electricity use is required for the adjustable legs. Product testing quantifies a performance life of 15 years. Maintenance of the product involves cleaning and dusting.'

Table 1: Life cycle stages of Orbis workstation

Process	Module	Description	Life cycle stages	Declared
				modules
Upstream	A1	Raw materials supply	A1-A3: Manufacturing stage	X
process	A2	Components/raw		X
		materials manufacture		
Core	А3	Components transport to		Χ
process		Zenith factory		
	A4	Manufacturing of final		X
		products		
Downstream	B1	Transport of final product	B1: Final product transport	X
process	B2	Maintenance	B2-B4: Usage stage	X
	В3	Replacement		Х
	B4	Operational energy use		X
	Cl	Transport	C1-C3: End-of-life	Х
	C2	Manual dismantling		Х
	C3	Waste disposal		X
Other	D	Recycling	Other Environmental Stage	Х
Environment				
al Stage				

System Diagram

An 'upstream – core – downstream' flow is adopted in this study. The upstream processes include the flows of raw materials. The core processes include all activities which the manufacturing organisation is in control of, i.e. transportation of the components to the manufacturing factory and the actual process of manufacturing. The downstream processes include the steps that are controlled by the user and the disposal or recycling options of the products.

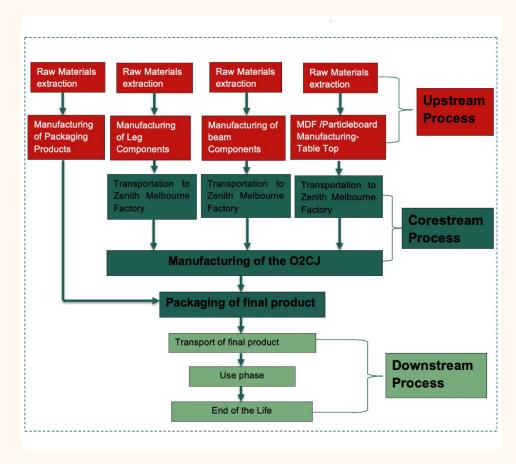


Figure 1: Process diagram Orbis workstation

End-of-life Scenarios

Zenith Interiors operates a take-back scheme for its furniture. Likewise, furniture owners resell or donate the furniture by themselves to extend its lifetime. In the end-of life for other environmental stages (represented as modules DError! Reference source not found.), all aluminium and steel parts of the product are recycled after being manually dismantled. This is noted separately due to Polluter pays principle (PPP).

Data Quality, Temporal Scope and Geographical Scope

The modelling of Zenith products is of high quality as detailed company specific data about the product components, component suppliers, the annual energy consumption and the annual production rate was provided for this study. Data for upstream and downstream processes are retrieved from suitable averages in the AusLCI and ecoinvent databases.

The temporal scope of the study is the period for which the data was collected. The data collection process started with the visit to Zenith's Melbourne factory in July 2019. The energy consumption data taken into consideration range from September 2018 to 2019. The production volume data is for 2019. For the background data, temporal scope for AUSLCI VI.33, a shadow database of modified ecoinvent 2.2 processes is July 2020. For ecoinvent 3.6 the temporal scope is September 2019.

Table 2: Data sources, geographical scope and data quality

Materials/fuels		Modul e	Data source	Geographica I scope	Data quality	
Raw materials supply, components / raw materials manufacture , packaging	Components for beam Components for legs Particle board/ Medium Density Fibreboard for tabletop Packaging of final product Packaging from	A1, A2	Information provided by Zenith Interiors	China China Australia	High quality	
Components transport to Zenith factory, manufacturi ng of final products	suppliers Transportation of steel/ aluminium components for beam (Shanghai, China and Victoria, Australia) Transportation of components for legs (Shanghai, China) Transportation of Medium Density fibreboard/ particle board for tabletop (Victoria, Australia) Electricity consumption Natural gas consumption	A3, A4	Information provided by Zenith Interiors	Australia	High quality	
Transportatio n of final product	Zenith Melbourne factory to client	B1	Assumption of average distance of 1,000 km according to Product Category Rules	Australia	Medium quality	
Usage stage	Replacement Operational energy use	B3 B4	Regular cleaning and dusting and motor replacement are recommended. Motor life span: 5 years Electricity to operate adjustable leg motor and stand-by energy are considered.	Australia	Medium quality	
End-of-life without recycling	Transport C1 Manual dismantling C2		Assumption of average distance of 1,000 km No impacts observed for manual	Australia	Medium quality	
	Waste disposal	C3	dismantling Complete product along with packaging ends up in landfill.			

Other Life	Recycling	D	100% of aluminium and	Australia	Medium
Cycle stages			steel parts are		quality
			recycled.		

Allocations

No allocation between co-products in the core module was necessary as there were no co-products created during manufacturing.

The methodological choices for allocation for reuse, recycling and recovery have been set according to the polluter pays principle (PPP). This means that the generator of the waste shall carry the full environmental impact until the point in the product's life cycle at which the waste is transported to a scrapyard or the gate of a waste processing plant (collection site). The subsequent user of the waste shall carry the environmental impact from the processing and refinement of the waste, but not the environmental impact caused in the earlier life cycles. The cut-off system model from ecoinvent was used. Any allocations in the AusLCI unit system and Industry Data 2.0 were adopted.

Content Declaration

Table 3: Materials used for Orbis workstation

Materials	Quantity	Unit
Medium Density Fibreboard / particle board	0.036	m³
Steel alloyed type 1	10.8/11.018	kg
Steel alloyed type 2	0.032	kg
Steel alloyed type 3	2.25	kg
Steel alloyed type 4	0.014	kg
Acrylonitrile butadiene styrene	0.163	kg
Polyoxymethylene/duracon	0.0464	kg
Motor for electric leg height adjustment	0.01	Kg
Unalloyed steel in the legs	3.768	kg
Aluminium extruded	2.23	kg
Aluminium die cast	9.641	kg
Unalloyed steel sheet	28.321	kg
Unalloyed steel in the beam	0.008	kg
Packaging materials from suppliers – plastic film	0.082707	kg
Packaging materials from suppliers – cardboard box	0.33	kg
Packaging for final product – cardboard box	0.33	kg
Energy during manufacturing – electricity	6.1	kWh
Energy during manufacturing – gas	48.5	MJ

Table 4: Energy consumption per product

Energy consumption	Quantity	Unit
Energy during manufacturing – electricity	6.1	kWh
Energy during manufacturing – gas	48.5	MJ
Energy useage during use stage – electricity	3.0602	kWh

Environmental Performance

Environmental Impact Assessment Methods

Table 5: Overview of environmental impact assessment methods used in the study

Impact category		Unit	Assessment method		
Global	Fossil	kg CO₂ eq.	Greenhouse Gas Protocol V1.02		
warming potential	Biogenic	kg CO2 eq.			
(GWP)	CO ₂ eq. from land transformation	kg CO₂ eq.			
	Total	kg CO₂ eq.			
Abiotic dep	letion	kg Sb eq.	CML-IA baseline V3.6		
Abiotic dep fuels)	letion (fossil	MJ			
Ozone laye (ODP)	r depletion	kg CFC-11 eq.			
Photochem	ical oxidation	kg C ₂ H ₄ eq.	Recipe 2008 Midpoint		
Acidification	n	kg SO ₂ eq.	CML-IA baseline V3.6		
Eutrophicat	ion	kg PO ₄ 3- eq.			
Water use		m³	AWARE VI.01		
Land use	Land use		Recipe 2016 Endpoint V1.04		
Human toxi	Human toxicity, cancer		USEtox 2		
Human toxi	city, non-cancer	CTUh			
Freshwater	ecotoxicity	CTUe			
Radioactive	e waste	kg	EDIP 2003 method		
Hazardous	waste	kg	EDIP 2003 method		
Non-hazara	dous waste	kg	EDIP 2003 method (Sum of Bulk waste and Slag waste)		
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand V1.11 method: calculated as sum of renewable – biomass, renewable – wind, solar, geothermal, and renewable – water.		
Renewabl e	Use as raw materials	MJ	Manual calculation		
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand V1.11 method: calculated as sum of non-renewable – fossil, non-renewable – nuclear, and non-renewable – biomass.		
Non- renewabl e	Use as raw materials	MJ	Manual calculation		
Secondary material resources		kg	Manual calculation		
Renewable	secondary fuels	MJ	0		
Non-renew fuels	able secondary	MJ	0		
Net use of f	resh water	m³	Recipe 2016 Midpoint V1.04		

The following tables show the environmental impacts of the Orbis workstation with respect to upstream, core and downstream processes, including all processes listed in Table 1. The downstream processes are divided into the two end-of-life scenarios described in chapter 7.

Life Cycle Impacts

O2CJ-Particle board tabletop and legs with bracket

Table 6: Life cycle impacts - O2CJ (particle board top and legs with bracket)

Impact category		Unit	Upstream	Core	Downstream	Total	Other
impact cate	gory	Offic	· ·			Total	
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
	T		Al-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	4.95E+02	4.10E+01	1.28E+02	6.63E+02	-2.83E+02
warming		eq.					
potential	Biogenic	kg CO ₂	-3.73E+01	2.07E-02	9.56E+01	5.83E+01	-2.53E-01
(GWP)		eq.					
	CO2 eq. from	kg CO ₂	8.01E-01	7.54E-05	4.21E-04	8.01E-01	-1.05E-03
	land	eq.					
	transformation						
	Total	kg CO ₂	4.58E+02	4.11E+01	2.23E+02	7.22E+02	-2.83E+02
		eq.					
Abiotic depl	etion	kg Sb	1.14E-02	2.32E-05	1.02E-04	1.16E-02	-7.87E-05
		eq.					
Abiotic depl	etion (fossil	MJ	4.86E+03	3.91E+02	1.69E+03	6.94E+03	-1.67E+03
fuels)							
Ozone layer	depletion (ODP)	kg	1.82E-05	2.80E-06	1.87E-05	3.97E-05	-6.12E-06
		CFC-11					
		eq.					
Photochemi	cal oxidation	kg	1.57E+00	3.65E-01	2.76E+00	4.69E+00	-8.66E-01
		NMVOC					
Acidification		kg SO ₂	2.11E+00	2.05E-01	5.91E-01	2.91E+00	-7.02E-01
		eq.					
Eutrophication		kg	7.28E-01	4.86E-02	1.31E-01	9.08E-01	-1.23E-01
		PO ₄ 3-					
		eq.					
Water use		m ³	1.71E+03	3.13E+02	3.09E+02	2.33E+03	-5.72E+03

Table 7: Resource use - O2CJ (particle board top and legs with bracket)

	Table 7. Resource use = 02CJ (particle board top and legs with bracket)						
Impact category		Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environment
					with landfill		al stage-
							Recycling
			Al-A2	A3-A4	B1-C4		D
Primary	Use as energy	MJ	1.00E+03	9.36E+00	5.41E+00	1.02E+03	-1.47E+02
energy	carrier						
resources	Use as raw	MJ	0	0	0	0	0
Renewable	materials						
	Total	MJ	1.00E+03	9.36E+00	5.41E+00	1.02E+03	-1.47E+02
Primary	Use as energy	MJ	5.45E+03	4.20E+02	1.80E+03	7.67E+03	-1.77E+03
energy	carrier						
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
Non-	materials						
renewable	Total	MJ	5.45E+03	4.20E+02	1.80E+03	7.67E+03	-1.77E+03
Secondary n	naterial	kg	0	0	0	0	0
resources	resources						
Renewable secondary fuels		MJ	0	0	0	0	0
Non-renewable secondary		MJ	0	0	0	0	0
fuels							
Net use of fre	esh water	m³	4.07E+01	7.28E+00	7.19E+00	5.52E+01	-1.33E+02

Table 8: Other impacts - O2CJ (particle board top and legs with bracket)

able 6. Other Impacts C200 (particle board top and legs with bracket)										
Impact category	Unit	Upstream	Core	Downstrea	Total	Other				
		processes	processes	m		environmental				
				processes		stage-Recycling				
				with landfill						
		Al-A2	A3-A4	B1-C4		D				
Land use	specie	1.51E-07	1.36E-08	1.10E-08	1.76E-07	-7.03E-08				
	s.yr									
Human toxicity, cancer	CTUh	9.29E-08	1.09E-09	3.46E-09	9.75E-08	-2.31E-08				
Human toxicity, non-	CTUh	1.60E-08	1.92E-10	1.81E-09	1.80E-08	-8.25E-09				
cancer										
Freshwater ecotoxicity	CTUe	6.35E-01	4.84E-02	1.68E-01	8.51E-01	-1.92E-01				

Table 9: Waste flow categories - O2CJ (particle board top and legs with bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		Al-A2	A3-A4	B1-C4		D
Radioactive waste	kg	8.58E-03	6.32E-06	2.66E-06	8.59E-03	-1.45E-05
Hazardous waste	kg	9.62E-03	4.32E-04	7.37E-04	1.08E-02	1.38E-03
Non-hazardous waste	kg	7.89E+01	1.22E+00	5.50E+01	1.35E+02	-2.97E+01

Table 10: Output flow categories - O2CJ (particle board top and legs with bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

Medium density fibreboard tabletop and legs with bracket

Table 11 Life cycle impacts - O2CJ (MDF top and legs with bracket)

Impact cate	egory	Unit	Upstream	Core	Downstream	Total	Other
impact cate	Impact datagory		processes	processes	processes	Total	environme
			processes	processes	with landfill		ntal stage-
					With Idilanii		
			A1 A0	A O A 4	D1 04		Recycling
			A1-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	5.06E+02	4.10E+01	1.29E+02	6.76E+02	-2.83E+02
warming		eq.					
potential	Biogenic	kg CO ₂	-4.62E+01	5.28E+01	5.28E+01	5.95E+01	-2.53E-01
(GWP)		eq.					
	CO2 eq. from	kg CO ₂	8.01E-01	7.54E-05	4.25E-04	8.01E-01	-1.05E-03
	land	eq.					
	transformation						
	Total	kg CO ₂	4.60E+02	4.11E+01	2.23E+02	7.24E+02	-2.83E+02
		eq.					
Abiotic depl	etion	kg Sb	1.14E-02	2.32E-05	1.03E-04	1.16E-02	-7.87E-05
		eq.					
Abiotic depl	etion (fossil	MJ	4.96E+03	3.91E+02	1.71E+03	7.06E+03	-1.67E+03
fuels)							
,							
Ozone laver	depletion (ODP)	kg	1.81E-05	2.80E-06	1.89E-05	3.98E-05	-6.12E-06
,	,	CFC-11					
		eq.					
Photochem	ical oxidation	kg	1.60E+00	3.65E-01	2.78E+00	4.75E+00	-8.65E-01
1110100110111	iodi oxidation	NMVOC	1.002 - 00	0.002 01	2.702 100	1, 62 + 66	0.002 01
Acidification)	kg SO ₂	2.13E+00	2.05E-01	5.97E-01	2.93E+00	-7.02E-01
Acidinication	Acidification		Z.10L 100	2.00L 01	J.J/L 01	2.93L 100	7.02L 01
Eutrophication		eq.	7.35E-01	4.065-00	1.33E-01	9.16E-01	-1.23E-01
Eutrophicati	IOH	kg PO4 ³⁻	7.30E-UI	4.86E-02	1.53E-UI	9.10E-01	-1.23E-UI
		eq.	1005 00	0105 00	0.11= 0.0	0.015.00	5 70 7 00
Water use		m³	1.98E+03	3.13E+02	3.11E+02	2.61E+03	-5.72E+03

Table 12 Resource use - O2CJ (MDF top and legs with bracket)

Impact catego	•	Unit	Upstream	Core	Downstream	Total	Other
Impact catego	31 y	Offic	processes	processes		Total	environment
			processes	processes	processes with landfill		
					With Idridiii		al stage-
							Recycling
			A1-A2	A3-A4	Bl-C4		D
Primary	Use as	MJ	1.17E+03	9.36E+00	5.41E+00	1.19E+03	-1.47E+02
energy	energy						
resources	carrier						
Renewable	Use as raw	MJ	0	0	0	0	0
	materials						
	Total	MJ	1.17E+03	9.36E+00	5.41E+00	1.19E+03	-1.47E+02
Primary	Use as	MJ	5.60E+03	4.20E+02	1.82E+03	7.80E+03	-1.77E+03
energy	energy						
resources	carrier						
Non-	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
renewable	materials						
	Total	MJ	5.60E+03	4.20E+02	1.82E+03	7.80E+03	-1.77E+03
Secondary mo	aterial	kg	0	0	0	0	0
resources							
Renewable se	condary fuels	MJ	0	0	0	0	0
Non-renewab	le secondary	MJ	0	0	0	0	0
fuels	,						
Net use of fres	h water	m³	4.71E+01	7.28E+00	7.21E+00	6.16E+01	-1.33E+02

Table 13 Other impacts - O2CJ (MDF top and legs with bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Land use	speci	1.68E-07	1.36E-08	1.11E-08	1.93E-07	-7.03E-08
	es.yr					
Human toxicity, cancer	CTUh	9.51E-08	1.09E-09	3.50E-09	9.97E-08	-2.31E-08
Human toxicity, non-cancer	CTUh	1.62E-08	1.92E-10	1.83E-09	1.82E-08	-8.25E-09
Freshwater ecotoxicity	CTUe	6.18E-01	4.84E-02	1.70E-01	8.36E-01	-1.92E-01

Table 14 Waste flow categories - O2CJ (MDF top and legs with bracket)

Table 11 Waste herr sategories	Table 11 Waste New Gategories G266 (MDT top and 1696 Will bracket)									
Impact category	Unit	Upstream	Core	Downstream	Total	Other				
		processes	processes	processes		environment				
				with landfill		al stage-				
						Recycling				
		Al-A2	A3-A4	B1-C4		D				
Radioactive waste	kg	8.58E-03	6.32E-06	2.69E-06	8.59E-03	-1.45E-05				
Hazardous waste	kg	9.56E-03	4.32E-04	7.44E-04	1.07E-02	1.38E-03				
Non-hazardous waste	kg	7.96E+01	1.22E+00	5.46E+01	1.35E+02	-2.97E+01				

Table 15 Output flow categories - O2CJ (MDF top and legs with bracket)

		<u> </u>				
Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

O2CJ-Particle board tabletop and legs without bracket

Table 16 Life cycle impacts - O2CJ (particle board top and legs without bracket)

	e cycle impacts –	Unit			·	Total	Othor
Impact co	itegory	UTIL	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
					-, -,		Recycling
	T		Al-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	5.04E+02	4.11E+01	1.27E+02	6.72E+02	-2.82E+02
warming		eq.					
potential	Biogenic	kg CO ₂	-3.66E+01	2.07E-02	9.39E+01	5.74E+01	-2.54E-01
(GWP)		eq.					
	CO ₂ eq. from	kg CO ₂	5.52E+01	1.33E-01	1.02E-01	5.55E+01	-2.41E+00
	land	eq.					
	transformation						
	Total	kg CO ₂	5.32E+02	4.12E+01	2.21E+02	7.95E+02	-2.83E+02
		eq.					
Abiotic de	pletion	kg Sb eq.	1.14E-02	2.32E-05	1.02E-04	1.16E-02	-7.87E-05
Abiotic de	pletion (fossil	MJ	4.86E+03	3.91E+02	1.69E+03	6.94E+03	-1.67E+03
fuels)							
Ozone lay	er depletion	kg CFC-11	1.82E-05	2.80E-06	1.87E-05	3.97E-05	-6.12E-06
(ODP)	·	eq.					
Photocher	mical oxidation	kg	1.60E+00	3.65E-01	2.75E+00	4.70E+00	
		NMVOC					-8.64E-01
Acidification	on	kg SO ₂	2.11E+00	2.05E-01	5.91E-01	2.91E+00	-7.02E-01
		eq.					
Eutrophico	ation	kg PO ₄ 3-	7.28E-01	4.86E-02	1.31E-01	9.08E-01	-1.23E-01
		eq.					
Water use	1	m ³	1.71E+03	3.13E+02	3.09E+02	2.33E+03	-5.72E+03
			12 . 00	5.101 02	0.002	2.302 30	3.7 22 33

Table 17 Resource use - O2CJ (particle board top and legs without bracket)

	urce use - 0200 (1			1		
Impact cate	gory	Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environment
					with landfill		al stage-
							Recycling
			Al-A2	A3-A4	B1-C4		D
Primary	Use as energy	MJ	1.00E+03	9.36E+00	5.41E+00	1.02E+03	-1.47E+02
energy	carrier						
resources	Use as raw	MJ	0	0	0	0	0.00E+00
Renewable	materials						
	Total	MJ	1.00E+03	9.36E+00	5.41E+00	2.17E+03	-1.47E+02
Primary	Use as energy	MJ	5.24E+03	4.20E+02	1.80E+03	2.10E+04	-1.77E+03
energy	carrier						
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
Non-	materials						
renewable	Total	MJ	5.24E+03	4.20E+02	1.80E+03	2.10E+04	-1.77E+03
Secondary n	naterial	kg	0	0	0	0	0
resources							
Renewable s	secondary fuels	MJ	0	0	0	0	0
Non-renewa	Non-renewable secondary		0	0	0	0	0
fuels							
Net use of fre	esh water	m³	4.16E+01	7.28E+00	7.19E+00	6.68E+01	-1.33E+02

Table 18: Other impacts - O2CJ (particle board top and legs without bracket)

Tuble 16. Other Impucts - 0203	rabie 18. Other impacts – 0203 (particle board top and legs without bracket)										
Impact category	Unit	Upstrea	Core	Downstream	Total	Other					
		m	processes	processes		environment					
		processe		with landfill		al stage-					
		S				Recycling					
		A1-A2	A3-A4	B1-C4		D					
Land use	species.	1.46E-07	1.36E-08	1.10E-08	1.71E-07	-7.03E-08					
	yr										
Human toxicity, cancer	CTUh	9.27E-08	1.08E-09	3.45E-09	9.72E-08	-2.29E-08					
Human toxicity, non-cancer	CTUh	1.59E-08	1.92E-10	1.81E-09	1.79E-08	-8.25E-09					
Freshwater ecotoxicity	CTUe	6.05E-01	4.85E-02	1.67E-01	8.21E-01	-1.91E-01					

Table 19 Waste flow categories - O2CJ (particle board top and leas without bracket)

rabie is waste flow categories – O2CJ (particle board top and legs without bracket)										
Impact category	Unit	Upstream	Core	Downstream	Total	Other				
		processes	processes	processes		environment				
				with landfill		al stage-				
						Recycling				
		A1-A2	A3-A4	B1-C4		D				
Radioactive waste	kg	8.58E-03	6.32E-06	2.66E-06	8.59E-03	-1.45E-05				
Hazardous waste	kg	8.28E-03	4.32E-04	7.37E-04	9.45E-03	1.38E-03				
Non-hazardous waste	kg	6.29E+01	1.21E+00	5.50E+01	1.19E+02	-2.97E+01				

Table 20: Output flow categories - O2CJ (particle board top and legs without bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

Medium density fibreboard tabletop and legs without bracket

Table 21 Life cycle impacts - O2CJ (MDF top and legs without bracket)

Impact co	ategory	Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
			Al-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	5.05E+02	4.80E+01	1.29E+02	6.82E+02	-2.83E+02
warmin		eq.					
g	Biogenic	kg CO ₂	-4.62E+01	3.63E-02	9.51E+01	4.89E+01	-2.53E-01
potentia		eq.					
1	CO2 eq. from land	kg CO ₂	8.00E-01	7.67E-05	4.24E-04	8.01E-01	-1.05E-03
(GWP)	transformation	eq.					
	Total	kg CO ₂	4.60E+02	4.80E+01	2.24E+02	7.32E+02	-2.83E+02
		eq.					
Abiotic de	epletion	kg Sb	1.14E-02	2.94E-05	1.03E-04	1.16E-02	-7.87E-05
		eq.					
Abiotic de	pletion (fossil	MJ	4.96E+03	3.93E+02	1.71E+03	7.06E+03	-1.67E+03
fuels)							
Ozone lay	er depletion (ODP)	kg	1.81E-05	2.81E-06	1.89E-05	3.98E-05	-6.11E-06
		CFC-11					
		eq.					
Photoche	mical oxidation	kg	1.60E+00	3.80E-01	2.76E+00	4.74E+00	-8.63E-02
		NMVOC					
Acidificati	on	kg SO ₂	2.13E+00	2.11E-01	5.96E-01	2.94E+00	-7.01E-01
		eq.					
Eutrophic	ation	kg	7.34E-01	5.09E-02	1.33E-01	9.18E-01	-1.23E-01
		PO ₄ ³⁻					
		eq.					
Water use)	m³	1.98E+03	3.45E+02	3.11E+02	2.64E+03	-5.72E+03

Table 22 Resource use - O2CJ (MDF top and legs without bracket)

Impact cate	gory	Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
			Al-A2	A3-A4	B1-C4		D
Primary	Use as energy	MJ	1.17E+03	1.35E+01	5.43E+00	1.19E+03	-1.47E+02
energy	carrier						
resources	Use as raw	MJ	0	0	0	0	0
Renewable	materials						
	Total	MJ	1.17E+03	1.35E+01	5.43E+00	1.19E+03	-1.47E+02
Primary	Use as energy	MJ	5.56E+03	4.22E+02	1.81E+03	7.80E+03	-1.77E+03
energy	carrier						
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
Non-	materials						
renewable	Total	MJ	5.56E+03	4.22E+02	1.81E+03	7.80E+03	-1.77E+03
Secondary n	naterial	kg	0	0	0	0	0
resources							
Renewable s	secondary fuels	MJ	0	0	0	0	0
Non-renewa	ble secondary	MJ	0	0	0	0	0
fuels							
Net use of fre	esh water	m³	4.71E+01	8.01E+00	7.23E+00	6.24E+01	-1.33E+02

Table 23 Other impacts - O2CJ (MDF top and legs without bracket)


Table 23 Other Impacts - 02C3 (MDF top and legs Without bracket)									
Impact category	Unit	Upstream	Core	Downstream	Total	Other			
		processes	processes	processes		environment			
				with landfill		al stage-			
						Recycling			
		A1-A2	A3-A4	B1-C4		D			
Land use	speci								
	es.yr	1.68E-07	1.54E-08	1.11E-08	1.95E-07	-7.02E-08			
Human toxicity, cancer	CTUh	9.5E-08	1.08E-09	3.49E-09	9.96E-08	-2.31E-08			
Human toxicity, non-cancer	CTUh	1.62E-08	1.92E-10	1.83E-09	1.82E-08	-8.25E-09			
Freshwater ecotoxicity	CTUe	0.617226	0.048482	0.169409	8.35E-01	-1.92E-01			

Table 24 Waste flow categories - O2CJ (MDF top and legs without bracket)

Table 24 Waste flow Categories - O2C3 (MDF top and legs without bracket)									
Impact category	Unit	Upstream	Core	Downstream	Total	Other			
		processes	processes	processes		environment			
				with landfill		al stage-			
						Recycling			
		Al-A2	A3-A4	B1-C4		D			
Radioactive waste	kg	8.58E-03	6.47E-06	2.69E-06	8.59E-03	-1.45E-05			
Hazardous waste	kg	0.009545	0.000433	0.000743	1.07E-02	1.41E-03			
Non-hazardous waste	kg	73.57635	1.218906	54.73158	1.30E+02	-2.97E+01			

Table 25 Output flow categories - O2CJ (MDF top and legs without bracket)

Table 20 Output now outogeness O200 (mbr top and logs without bracket)									
Impact category	Unit	Upstream	Core	Downstream	Total	Other			
		processes	processes	processes		environmental			
				with landfill		stage-			
						Recycling			
		A1-A2	A3-A4	B1-C4		D			
Reuse	kg	0	0	0	0	0			
Materials for recycling	kg	0	0	0	0	0			
Energy recovered	MJ	0	0	0	0	0			
Energy exported	MJ	0	0	0	0	0			
Energy exported, thermal	MJ	0	0	0	0	0			

Zenithinteriors.com

Australia - Melbourne, Sydney, Canberra, Brisbane, Perth, Adelaide

New Zealand - Auckland, Wellington, Christchurch

Asia - Hong Kong, Shanghai, Singapore, Shenzhen